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Abstract

The use of Deep Neural Networks (DNNs) for image segmentation shows promising results but requires

large, labelled training datasets. These datasets are rare for specific domain studies and necessitate

domain expertise and significant people hours to perform manual labelling. Using data acquired from a

voyage in November 2023 aboard the Kronprins Haakon, an automated labelling technique was used

to generate training data without any manual input. A camera-LiDAR payload designed by Oskar G.

Veggeland captured 2,111 images with accompanying LiDAR point clouds. Three labelling methods

were applied to the point cloud information, used to train three different models (U-Net, DeepLabV3+,

SegFormer), and tested on a 361-image manually labelled dataset. Despite the point cloud information

providing a semi-accurate map of sea ice in the images, the cloud suffered from excessive sparsity,

necessitating the three preprocessing methods. Compared to the manually labelled ice masks, the

Morphological and Otsu-Hybrid processed masks produced the best IoU scores at 0.60 each. After

being trained on the Morphological dataset for 30 epochs, U-Net was able to achieve an IoU score of

0.76 on the manually labelled test set. Overall, the Morphological dataset-trained models demonstrated

impressive recall scores whilst the Otsu-Hybrid dataset-trained models succeeded in precision. These

results suggest that utilizing LiDAR information and image processing methods could represent a viable

alternative to manual labelling of sea ice for binary segmentation. Code will be made available at:

https://github.com/colenorfleet/sea_ice_segmentation.

Keywords

Deep neural networks; binary segmentation; LiDAR point cloud; sea-ice; image processing; automated

labeling
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Resumo

A utilização de Redes Neurais Profundas (DNNs) para segmentação de imagens mostra resultados

promissores, mas requer grandes conjuntos de dados de treino rotulados. Estes conjuntos de dados

são raros para estudos de domı́nios especı́ficos e requerem experiência no domı́nio e horas de tra-

balho significativas para realizar a rotulagem manual. Utilizando dados adquiridos numa viagem em

novembro de 2023 a bordo do Kronprins Haakon, foi utilizada uma técnica de etiquetagem automati-

zada para gerar dados de treino sem qualquer introdução manual. Uma carga útil de câmara-LiDAR

concebida por Oskar G. Veggeland captou 2.111 imagens acompanhadas por nuvens de pontos Li-

DAR. Foram aplicados três métodos de rotulagem à informação da nuvem de pontos, utilizados para

treinar três modelos diferentes (U-Net, DeepLabV3+, SegFormer) e testados num conjunto de dados

rotulado manualmente de 361 imagens. Apesar da informação da nuvem de pontos fornecer um mapa

semipreciso do gelo marinho nas imagens, a nuvem sofria de dispersão excessiva, necessitando dos

três métodos de pré-processamento. Em comparação com as máscaras de gelo rotuladas manual-

mente, as máscaras processadas Morfológicas e Otsu-Hı́bridas produziram as melhores pontuações

de IoU, 0,60 cada. Depois de ser treinado no conjunto de dados Morfológicas durante 30 épocas, o

SegFormer conseguiu atingir uma pontuação IoU de 0,76 no conjunto de teste rotulado manualmente.

No geral, os modelos treinados com conjuntos de dados morfológicos demonstraram pontuações de

recuperação impressionantes, enquanto os modelos treinados com conjuntos de dados Otsu-Hybrid

obtiveram precisão. Estes resultados sugerem que a utilização de métodos de processamento de im-

agem e informação LiDAR pode representar uma alternativa viável à rotulagem manual do gelo marinho

para segmentação binária.

Palavras Chave

Redes neuronais profundas; segmentação binária; Nuvem de pontos LiDAR; gelo marinho; processa-

mento de imagem; rotulagem automatizada
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1.1 Motivation

In the machine learning field, the rapid development of Deep Neural Networks (DNNs) has yielded

impressive results and promises further development. One area of rapid development is in computer vi-

sion and specifically, image segmentation. Deep Learning (DL) methods are able to avoid the traditional

steps of semantic segmentation (manual feature definition, extraction, matching) and instead implement

end-to-end learning [1]. These DL methods when applied to image segmentation have outperformed

traditional algorithms across the board [2].

However, neural networks require large, labelled datasets for training. There are multiple available

datasets for autonomous driving [3], pedestrian tracking [4], and object recognition [5]. For specific do-

main applications such as sea-ice segmentation, these datasets can be difficult to find. A significant

amount of optical image datasets exist from icebreaker voyages, but the annotated counterparts are far

fewer. Multiple publications [6] [7] remark on the lack of comprehensive datasets for sea ice segmenta-

tion and classification.

In many cases, neural networks that are used for specific domain knowledge studies are trained using

transfer learning and custom datasets are created to meet the specific study’s needs. A streamlined

process to turn raw data and images into labelled ground truth data could drastically shorten the process

of training DNNs and increase the amount of domain specific labelled images.

1.1.1 Environmental Factors

In the Arctic, sea ice is an important indicator for the state of climate change and Arctic well-being [8].

However, sea ice extent has been diminishing at a steady rate as seen in Figure 1.1. This vanishing

of sea ice plays a pivotal role in enhancing further Arctic warming due to many effects, the most well-

known being surface albedo feedback. Surface warming melts sea ice, which has a high albedo value

and reflects significant amounts of heat from the sun back into space, replacing it with sea water. The

sea water is less reflective and absorbs more heat than the sea ice, increasing the rate of warming [9].

This effect causes a positive feedback loop that continues to diminish Arctic sea ice year over year.

Due to the increasing loss in sea ice extent, monitoring the remaining sea ice year over year becomes

more important to map the effects of climate change on the Arctic. Remote sensing and other methods

of satellite imagery offer wide coverage [11], but their results can be supplemented and validated by

shipboard observations. Closer perspectives can help not only segment between water and ice, but

classify different types of ice such as new ice, grey ice, first-year ice, and multi-year ice [6] [12]. The age

distinction within sea ice is important as older ice tends to be thicker and more resilient to changes in

atmospheric and ocean forcings compared to younger ice. In 1985, 33% of the ice pack was made of

ice older than four years, compared to 1.2% in March 2019 [13] as shown in Figure 1.2.

3



Figure 1.1: March and September Monthly Average Arctic Sea Ice Extent, 1979-2022 [10]

Figure 1.2: Extent of Multiyear Ice in the Arctic: Week of Minimum Total Extent, 1985-2023 [14]

1.1.2 Economic Factors

As Arctic sea ice continues to melt year over year, the effects have ceased to be purely environmental

and now are branching into navigational and economic waters. A multi-modal ensemble model predicts

that the Arctic could be seasonally ice-free as early as September 2055, depending on the scenario [15].

As sea ice year after year decreases, interest in the Arctic as a possible trading route increases. Whether

4



using the Northwest Passage, the Transpolar Route, or the Northern Sea Route (NSR), these new

pathways are between 30-50% shorter than the Suez or Panama canal routes [16].

With increasing numbers of ships entering the Arctic, navigation swells in importance, especially with

the likely introduction of Marine Autonomous Surface Ships (MASS) in the future. Studies focused on

using Light Detection and Ranging (LiDAR) to map near-ship sea ice have already shown promise for

improving ships’ situational awareness in ice fields [17] [18].

1.1.3 DigitalSeaIce Project

These factors have precipitated the development of the the DigitalSeaIce project, a partnership between

Norway and China described as ”a multi-scale integration and digitalization of Arctic sea ice observations

and prediction models” [19]. Funded in part by The Research Council of Norway, the project pulls

expertise from multiple universities aiming to improve ice forecasts in the Arctic with a focus on long-

term variations and prediction.

The work for this thesis specifically falls under Work Package 2 (of five), entitled ”Intelligent local-

scale observations and analytics”. The research question asked by this work package is essentially:

”Can we develop autonomous, trustworthy, and time-efficient methods for monitoring and analysis of

the large amounts of local-scale (100-500 m) in-situ sea ice data as required by work packages 1 and

4?” [19]. The context to which this work package fits into the larger DigitalSeaIce project is displayed in

Figure 1.3

Figure 1.3: DigitalSeaIce Work Package Relations [19]
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1.2 Problem Definition

The problem presented in this work is the transformation of optical and LiDAR data into a dataset suited

for training a deep neural network on the segmentation of water and ice. Using a payload designed

by Oskar G. Veggeland containing a camera and LiDAR, raw data was captured during an icebreaker’s

voyage through the Arctic [20]. This apparatus captured continuous optical images and 3D point-cloud

data of the sea ice as the ship traveled.

As sea ice is solid surface, it produces a high intensity point cloud in comparison to the sea water

which tends to scatter LiDAR beams. Based on these assumptions, the returned point-cloud from the

shipborne LiDAR array should consist only of sea ice. This point-cloud information can serve as a ’map’

of the sea ice and can then be converted into 2D ground truth data for a deep neural network. The goal

of this research endeavor is to determine if training a neural network using this automatically created

ground truth data is feasible.

1.3 Challenges

The principal challenge for this research effort is the quality of the LiDAR data. Due to the differences

in capture rates between the LiDAR and the optical camera, the 3D point-cloud often does not line up

perfectly with the optical image. Specifically, there are differences in the capture rates of the LiDAR and

optical camera. Multiple point clouds are sometimes attributed to a single optical frame, adding motion

blur and distortion to the point clouds. Additionally, the returned point cloud is very sparse and does not

accurately represent the edges of the sea ice floes. The sparsity of the LiDAR point cloud introduces

large amounts of false negative pixels to the ground truth and increases the difficulty during training.

These issues precipitated the need for preprocessing of the ground truth LiDAR data into three different

datasets.

1.4 Aim & Scope

The aim of this thesis is to prove the feasibility of an automated data labelling pipeline to train a neural

network in binary segmentation of water and sea ice. Work done by Oskar G. Veggeland converted the

LiDAR point cloud into a 2D image taken from the point of view of the camera [20]. Various levels of

preprocessing will be performed on the ground truth data and their effects investigated. A handful of

different neural networks will then be trained using these datasets and their performances on a manually

labelled dataset analyzed. Emphasis will be placed on keeping the process generalizable in the hopes

that it can be applied to different camera configurations and weather conditions. Evaluation of the model
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will be performed with Intersection-over-Union (IoU), Dice score, pixel accuracy, precision, and recall.

1.5 Contribution

The main contribution of this thesis will be a proof-of-concept showing the feasibility of using LiDAR data

to create an automated labelling pipeline for the supervised training of a neural network. This process

will provide a method of acquiring labelled training data that avoids copious hours of manual labor.

Ideally, the process can be applied to future voyages through the Arctic to create a more robust body of

data on Arctic sea ice. The addition of the dataset to the public domain with future works should also

help future research efforts related to the intersection of computer vision and Arctic sea ice. Hopefully,

this process can assist scientists in their efforts to measure the effects of climate change and improve

navigation for ships in the Arctic.
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2.1 Morphology

Mathematical morphology is a method within computer vision related to the shapes, sizes and other

aspects of geometrical structures [21]. In the context of this thesis, morphology will be used to transform

an image of the LiDAR point cloud into a binary ground truth mask usable by the deep neural network.

2.1.1 Erosion, Dilation, Opening, and Closing

Morphology can be broken down into two basic methods: erosion and dilation. In this case, the image

will be assumed to be binary, i.e. back-scatter from LiDAR signifies a value of 1 (ice) with 0 occupying

the rest of the image (water). A shape smaller than the image size is used to traverse the image, known

as a structuring element [22]. Depending on if the structuring element fits, hits, or misses the desired

pixels, an action will be performed. Generally, erosion removes pixels from objects bounded by the

structuring element while dilation adds pixels [23].

Opening and Closing are two further methods that are combinations of erosion and dilation. Specifi-

cally, opening is erosion followed by dilation while closing is the reverse. Figure 2.1 demonstrates both

processes on the same shape.

Figure 2.1: Example of Opening and Closing performed on the same shape [21]

In general, openings are used for removing small objects, protrusions, and thin connections between
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objects while closing removes small holes, smooths objects, and can fill gaps in the contour [24]. For

this application, closing will be applied to the LiDAR point clouds to reduce sparsity.

2.2 Otsu’s Method

In the context of this thesis, Otsu’s method was used to perform automatic image thresholding on optical

images to create a more representative ground truth dataset. Otsu’s method is an automatic threshold

selection algorithm for picture segmentation. At the highest level, the algorithm aims to find the maximum

separability of two classes within an image.

In an ideal case, the histogram representing a gray image has two large peaks (representing the

foreground and background) and the ideal threshold is the valley floor between the two peaks. This

allows a segmentation of the fore and backgrounds of an image. However, in most images the peaks and

valleys are not so distinct and are often imbued with noise. Otsu’s thresholding method was designed

to find this ideal ’valley’ in any image. Figure 2.2a displays an image of sea ice while Figure 2.2b shows

the grayscale image’s histogram. The red line represents the pixel threshold chosen by Otsu’s method

to divide the image. The formulation of this method is summarized in the following section, as was

published in [25].

(a) Original Image (b) Gray Image Histogram

Figure 2.2: Otsu’s Threshold Histogram
Red line represents Otsu’s Threshold Value
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2.2.1 Formulation

Otsu’s method assumes an image is presented in L gray levels, in this case it is 256 bins for an 8-bit

image. The number of pixels at any level i is denoted ni and the total number of pixels becomes:

N = n1 + n2 + ...+ nL (2.1)

The gray-level histogram is normalized and assumed to be a probability distribution:

pi =
ni

N
, pi ≥ 0, ΣL

i=1pi = 1 (2.2)

Then all pixels in the image are separated into two separate classes, C0 and C1 using a threshold

value at level k. Class C0 represents all pixels with intensities [1, .., k] whereas class C1 denotes

intensities [k+1, ..., L]. The equations for the probabilities and class mean levels are given below:

ω0 =

k∑
i=1

pi = ω(k) (2.3)

ω1 =

L∑
i=k+1

pi = 1− ω(k) (2.4)

µo =

∑k
i=1 i ∗ pi
ω0

(2.5)

µ1 =

∑L
i=k+1 i ∗ pi

ω1
(2.6)

Theoretically, the next step in this process is to find the within-class variance, however for a bi-modal

histogram this is equivalent to finding the between-class variance, σ2
B :

σ2
B = ω0 ∗ ω1 ∗ (µ0 − µ1)

2 (2.7)

Thus, the optimal threshold k∗ maximizes the between-class variance for all tested thresholds k:

σ2
B(k

∗) = max(1≤k<L)σ
2
B(k) (2.8)

2.3 Deep Learning Models in Image Segmentation

Image segmentation algorithms have moved from traditional image processing methods such as thresh-

olding, k-means clustering, and Markov random fields to now favoring deep learning models [2]. These

deep learning models have shown impressive performance compared to these older models and have
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altered the course of development in the field. Within this broad category, there are a variety of different

methods and network architectures.

2.3.1 Convolutional Neural Networks

A successful and often-used network architecture for deep learning in the field of computer vision is the

Convolutional Neural Network (CNN). The key to the efficacy of these networks is their ability to extract

features from input images. The basic structure of a CNN is composed of four layers: a convolutional

layer, a pooling layer, an activation function, and a fully-connected layer [26]. In the convolutional layer,

a weighted filter (known as a kernel) is passed over the input image. The weights are at first random

and gradually learned during training. In the pooling layer, the dimensions of the feature map (created

by the kernel in the previous step) are reduced while retaining as much information as possible. The

activation function is essentially a test to determine whether or not a neuron should be fired based on

the output of the pooling layer. Finally, the fully-connected layer connects all of the neurons determined

by the activation function to those in the layers above and below [26]. Using a loss function and back-

propagation, the network can learn which features correspond with their respective outputs and weight

them to minimize the loss. Figure 2.3 displays diagrams representing each layer of a typical CNN.

(a) Convolutional Layer (b) Pooling Layer

(c) Example of One Activation Function (ReLU)

(d) Fully-Connected Layer

Figure 2.3: Diagrams displaying each layer of a CNN [26]
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2.3.2 Encoder-Decoder Architectures

Further development to convolutional methods is the addition of a decoder. In an encoder-decoder

network architecture, an encoder compresses the input data into a representation in the latent space.

Then the decoder network translates the latent space representation back into a prediction of the output

[2]. The first widely-recognized neural network with an encoder-decoder architecture was the U-Net,

developed in 2015.

The U-Net architecture consists of a contracting, downsampling path and an expanding, upsampling

path. The combination of 3x3 convolutions, rectified linear units (ReLU), and 2x2 max pooling opera-

tions achieved state-of-the-art segmentation results at the time [27]. The architecture of this model is

displayed below in Figure 2.4.

Figure 2.4: U-Net Model Architecture [27]

Another variation on the encoder-decoder network architecture was developed in 2017, called the

Pyramid Scene Parsing Network (PSPNet). The goal of the pyramid scene parsing network was to

avoid image segmentation errors that could be explained by context (e.g. a boat misclassified as a car

despite being in the water). To improve the performance of scene parsing, the authors stacked multiple

sub-regions with different sized receptive fields on top of the output feature map from an encoder. The

novel method allowed for global contexts to be introduced to the existing feature maps and achieved 1st

place performance at the time on datasets like PASCAL VOC 2012 and Cityscapes [28]. A diagram of

this network is displayed below in Figure 2.5.

A further advancement along this developmental line is the latest iteration of the DeepLab family,

DeepLabV3+. This updated version combines Spatial Pyramid Pooling (SPP) with an encoder-decoder
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Figure 2.5: Pyramid Scene Parsing Network Architecture [28]

structure while applying atrous convolution to extract denser feature maps. The key difference from its

previous iteration, DeepLabV3, was the addition of a decoder module that allows for detailed object

boundary recovery. [29]. The architecture of this model can be seen in Figure 2.6.

Figure 2.6: DeepLabV3+ Network Architecture [29]

2.3.2.A Atrous Convolution and Spatial Pyramid Pooling

Two of the methods mentioned previously that enabled increased levels of performance for these encoder-

decoder structured models are explained in more detail below.

Atrous convolutions are a method that allows the user to manually adjust the filter’s field-of-view [30].

The receptive field of the neural network is altered by inserting a certain amount of zeros between filter

values [31]. The rate, r, changes the space between the weights of the kernel. Using this parameter,

the size of the receptive field in the convolutional layer can be controlled. This means the filter can now

look at larger areas of the input without a decrease in the spatial resolution or an increase in the kernel

size [32]. This method is displayed in Figure 2.7 and is used in DeepLabV3+.

SPP is a method that removes the fixed size constraint of the network. In other words, with SPP the

network can allow inputs of various sizes to be used within the same convolutional neural network. Be-

fore this development, convolutional neural networks required all images in a dataset to have the same

size. If an image was not this size, it would either need to be cropped or warped to fit the input require-

ment and as a result, valuable data would be lost. By creating different spatial bins that are then pooled
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Figure 2.7: Atrous Convolution with kernel size 3x3 and differing rates [30]

in a single layer, images of any size can be input into a CNN [33]. Figure 2.8 shows the SPP architecture.

In addition to enabling any physical size image to function as an input to a convolutional neural network,

SPP allows networks to encode multi-scale contextual information to better inform predictions [29]. A

visual representation of SPP is shown in Figure 2.8.

Figure 2.8: Diagram Demonstrating Spatial Pyramid Pooling in a CNN [33]

2.3.3 Transformers in Computer Vision

While the majority of neural network architectures used for computer vision are convolutional in nature,

vision transformers are growing in popularity. Since the introduction of the classical Vision Transformer

(ViT), the use of these transformers for classification, detection, segmentation, and compression has
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risen dramatically.

Transformers are typically used for Natural Language Processing (NLP), where words are converted

to embeddings and are encoded according to their position in a sequence. The same concept is applied

for ViT using images; an image is split into fixed-size patches, linearly embed, positionally encoded, and

fed into the transformer. An image of the original Vision Transformer architecture is seen in Figure 2.9.

Figure 2.9: Vision Transformer Network Architecture [34]

In their comprehensive survey, Jamil et al. found that visual transformers are succeeding in classifi-

cation and detection because of self-attention mechanisms and effective transfer learning but suffer from

high computational costs, large training datasets, and lack of interpretability [35]. Tranformers’ need for

pre-training on large datasets arises as transformer architectures do not inherently encode inductive

biases for visual data, unlike convolutional architectures which can encode prior image knowledge [36].

As for computational complexity, the cost of core self-attention in transformers increases at a quadratic

rate with the number of patches therefore increasing the barrier to using these transformers for higher

resolution tasks in object detection and image segmentation [36]. In general, transformers offer a very

promising avenue in the field of computer vision but suffer from significant drawbacks. As a result of

these hindrances, focus has been placed on making transformers’ architectures more efficient. Seg-

Former is a simple, efficient yet powerful semantic segmentation model that combines a transformer

encoder with MultiLayer Perceptron (MLP) decoders [37]. Its framework is displayed in Figure 2.10.

SegFormer benefits from a transformer encoder that generates a hierarchical feature representation

with a focus on multi-level features without using Positional Embedding, lightening the computational

load. The decoder only consists of MLP layers, keeping complexity low while maintaining an large

Effective Receptive Field (ERF) [37]. For this thesis, SegFormer is used as a point of comparison

against more traditional convolutional image segmentation methods as it represents a state-of-the-art

vision transformer.
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Figure 2.10: SegFormer Network Architecture [37]

2.4 Pretraining and Transfer Learning

A key prerequisite for high-performing neural networks is sufficient quantities of labelled training data.

In supervised learning, it is difficult for a model to perform well if it is not trained with adequate ground

truth data. To circumvent this problem, a model can be pretrained on data not specifically meant for the

task at hand and then fine-tuned on applicable data in a general process known as transfer learning.

Typically in pretraining, a network architecture is trained on a large dataset such as ImageNet [38] to

teach a model general image features. The weights for each layer are kept to further improve upon with

fine-tuning on a smaller, task-specific dataset [39]. When there is a lack of representative training data,

transfer learning has been shown to greatly outperform common supervised learning methods [40].

2.5 Data Augmentation

One main goal of improving deep convolutional networks in computer vision tasks is increasing their

generalizability. This refers to a model’s ability to perform on information not previously seen before.

Some models tend to overfit, meaning they become too attuned to the training data and struggle to make

inferences on unseen testing data. One effective method of combating overfitting is data augmentation.

Augmented datasets represent a more comprehensive set of possible data points, shrinking the

distance between training and validation datasets along with unseen testing sets [39]. Typical data

augmentations for computer vision tasks include cropping, flipping, color space alterations, rotations,

translations, and noise injections. In general, data augmentation artificially increases the size of the

training dataset, allowing the model to become more generalizable especially when working with smaller

datasets.
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2.6 LiDAR Field-of-View Mask

As LiDAR measures light that is emitted and then back-scattered, there is a distance where no mean-

ingful information will be returned. In the images used for this thesis, the distance occurs close to the

horizon. In order to avoid the model classifying the sky water, a mask was applied to each image. This

mask designated the area where information was returned for the LiDAR and was computed by Oskar

G. Veggeland [20]. Loss was only back-propagated from areas inside the mask, or where the LiDAR

was ’active’.

Figure 2.11: Optical Images with areas outside the LiDAR Field-of-View (FOV) Mask Highlighted in Red

Figure 2.11 displays two examples of optical images with areas outside the mask overlaid and high-

lighted. The mask usually removes areas in the distance and the sky, but occasionally clips areas

towards the start and end of recording.

2.7 Evaluation

There are a variety of ways to evaluate the performance of image segmentation models. In this thesis,

the Intersection-over-Union, pixel accuracy, precision, recall, and Dice score will be used. These metrics

were chosen based off of previous studies in image segmentation on sea ice [1] [12] [41].

All measures of performance rely on the following definitions related to pixel classification.

• TP (True Positive): the pixel was correctly predicted as ice.

• TN (True Negative): the pixel was correctly predicted to be water.
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• FP (False Positive): the pixel was incorrectly predicted to be ice.

• FN (False Negative): the pixel was incorrectly predicted to be water.

2.7.1 Intersection-over-Union

The Intersection-over-Union measures the ability of a model to correctly classify an object or shape. The

metric measures the overlap between the model predicted object boundary and the actual ground truth.

Equation 2.9 shows the method of calculating IoU assuming A represents the ground truth prediction

while B represents a prediction. Figure 2.12 displays a conceptual diagram.

Figure 2.12: Visualization of Intersection over Union [42]

IoU =
A ∩B

A ∪B
=

TP

TP + FP + FN
(2.9)

2.7.2 Pixel Accuracy

The pixel accuracy is a simple metric designed to provide an overall view of the model’s performance.

It’s definition is simply the total number of correctly predicted pixels over the total number of predicted

pixels. It is displayed in Equation 2.10.

Pixel Accuracy =
TP + TN

TP + TN + FP + FN
(2.10)

2.7.3 Dice Score

The Dice score is another method of measuring the similarity of a predicted mask with its ground truth.

For example, to assess the similarity of a ground truth mask, A, and its prediction, B, the equation can

be defined as:
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DICE =
2 ∗ | A ∩B |
| A | + | B |

=
2 ∗ TP

2 ∗ TP + FP + FN
(2.11)

A Dice score of 0 indicates zero similarity whilst a value of 1 indicates perfect overlap.

2.7.4 Precision

Precision aims to measure the percentage of positive pixels predicted accurately. It is defined as:

Precision =
TP

TP + FP
(2.12)

In a binary segmentation task, a high precision means that if a pixel is predicted to be positive it

is likely that it is correct. On the other hand, low precision indicates that the positive class (ice) is

over-predicted.

2.7.5 Recall

Recall is a measure of the percentage of the ground truth positive pixels that were predicted correctly

and is defined as:

Recall =
TP

TP + FN
(2.13)

A high recall value in indicates that the model is correctly predicting most of the ground truth positive

pixels. If recall is low, the model is missing object pixels and is over-predicting the background class

(water).

2.7.6 Sea Ice Pixel Proportion (SIPP)

For the purposes of visualizing model performance on different types of images, sea ice pixel proportion

was incorporated into the evaluation metrics. In the context of this thesis, SIPP is defined as the ratio of

ice pixels within an image. Only the pixels within the LiDAR FOV mask are considered.

SIPP =
Nice

Ntotal
(2.14)

where Nice denotes the number of pixels classified as ice and Ntotal is the total number of pixels within

the LiDAR FOV mask.
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2.8 Loss Function

The loss function chosen for the training of these neural networks was the Binary Cross-Entropy (BCE)

Loss. BCE Loss is commonly used in binary classification tasks where a given sample should either be

assigned 0 or 1. As it is a logarithmic loss, the value will increase exponentially the closer the predicted

probability of the true class gets to 0. On the other hand, if a sample has a high probability of being

correctly predicted as the true class, the value will be very low. As bad predictions are be penalized

heavily compared to good ones, this serves as an acceptable metric to train models. The formulation is

displayed in Equation 2.15.

BCE =
−1

N

N∑
i=1

yi ∗ log(p(yi)) + (1− yi) ∗ log(1− p(yi)) (2.15)

where yi represents the class and log(p(yi)) represents the probability of that class occurring. For

this thesis, the loss will be calculated with logits instead of probabilities to avoid numerical instabilities,

as shown in Equation 2.16.

BCEWithLogits =
1

N

N∑
i=1

(
log

(
1 + e−zi

)
− yizi

)
(2.16)

where N is the number of samples, zi is the logit from the model, and yi is the true label (0 or 1).
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3.1 Deep Learning for Image Segmentation

While image segmentation using deep learning is a growing field, it is also one that has been studied

extensively. In the last 10 years, rapid development has been performed in the form of different models

and network architectures. Figure 3.1 displays a timeline of deep learning segmentation algorithms on

2D images from 2014 to 2020.

Figure 3.1: Timeline of Deep Learning Segmentation Algorithms, 2014-2020 [2]

Minaee et al. [2] measured the performance of the above algorithms on a variety of datasets. Ta-

ble 3.1 below displays eight different models and their respective performances on the PASCAL-VOC

dataset. It should be mentioned the asterisk indicates the network has been pre-trained on a different

dataset. DeepLabV3+ scores high compared to previous convolutional methods and thus was chosen

as one of the models for this study.

Method Backbone mIoU

FCN VGG-16 62.2

RefineNet ResNet-152 84.2

PSPNet ResNet-101 85.4

DeeplabV3 ResNet-101 85.7

PSANet ResNet-101 85.7

DeeplabV3+ Xception-71 87.8

EMANet ResNet-152 88.2

DeeplabV3+* Xception-71 89.0

Table 3.1: Image Segmentation Network Performances on PASCAL-VOC dataset [2]
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In recent years, deep neural networks have been used for image segmentation in a variety of fields

with success. When studying leaf spot disease in sugar beets, Adem et al. [43] were able to achieve a

classification rate of 96.47% using Yolov4 with image processing on a dataset of 1040 images. In the

medical field, image segmentation is commonly used to identify tumors and other aberrations in medical

images. Gite et al. [44] utilized a U-Net architecture in lung segmentation with X-ray images to produce

98% segmentation accuracy and a mIoU score of 0.95.

Recently, transformers are being adapted to segmentation tasks and producing impressive results.

The development of transformer models has been pushed forward by their self-attention which allows

capture of ’long-term’ dependencies between sequence events and their large scale pre-training com-

bined with subsequent fine-tuning [36]. Thisanke et al. [45] conducted a state-of-the-art survey of vision

transformers in the field of semantic segmentation. A summary of the relevant results is below in Table

3.2.

Datasets
Model Variant Backbone # Params (M) ADE20K Cityscapes

SETR SETR-MLA (16,160k) ViT-L 310.57 48.64
SETR-PUP(16,80k) ViT-L 318.31 79.34

Swin Swin-L 234 53.5

Segmenter ViT-L 307 53.63 81.3

PVT PVT v1 PVT-Large 65.1 44.8
PVT v2 PVT v2-B5 85.7 48.7

HRFormer OCRNet(7,150k) HRFormer-B 50.3 46.3
OCRNet(15,80k) HRFormer-B 50.3 81.9

Mask2Former Swin-L-FaPN 56.4
Swin-B 83.3

MiT-B0 3.4 37.4 76.2
MiT-B1 13.1 42.2 78.5

SegFormer MiT-B2 24.2 46.5 81
MiT-B3 44 49.4 81.7
MiT-B4 60.8 50.3 82.3
MiT-B5 81.4 51 82.4

Table 3.2: State-of-the-Art Survey of Transformers in Semantic Segmentation [45]

While SegFormer does not represent the absolute best performer on either the ADE20K or the

Cityscapes dataset, it maintains competitive performance with impressively low parameters. This justi-

fied its usage in this study as the models were trained on a laptop GPU. The performance of SegFormer

compared to well-known convolutional methods on the same two datasets is displayed in Table 3.3.

Despite fewer parameters, SegFormer maintains competitive performance compared to PSPNet and

DeepLabV3+ on both datasets.
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ADE20K Cityscapes
Method Encoder # Params (M) Flops FPS mIOU Flops FPS mIoU

FCN MobileNetV2 9.8 39.6 64.4 19.7 317.1 14.2 61.5
ResNet-101 68.6 275.7 14.8 41.4 2203.3 1.2 76.6

PSPNet MobileNetV2 13.7 52.9 57.7 29.6 423.4 11.2 70.2
ResNet-101 68.1 256.4 15.3 44.4 2048.9 1.2 78.5

DeepLabV3+ MobileNetV2 15.4 69.4 43.1 34.0 555.4 8.4 75.2
ResNet-101 62.7 255.1 14.1 44.1 2032.3 1.2 80.9

SETR ViT-Large 318.3 5.4 50.2 0.5 82.2

MiT-B0 3.8 8.4 50.5 37.4 125.5 15.2 76.2
SegFormer MiT-B4 64.1 95.7 15.4 51.1 1240.6 3.0 83.8

MiT-B5 84.7 183.3 9.8 51.8 1447.6 2.5 84.0

Table 3.3: SegFormer Compared to Traditional Methods in Semantic Segmentation [37]

3.2 Sea Ice Segmentation

With the development of deep learning models for image segmentation, the models have been increas-

ingly applied to sea ice in a variety of ways. While impressive work has been done on segmenting sea

ice from remote sensing information [46] [47], for the purpose of brevity the state-of-the-art was focused

on shipborne optical studies.

3.2.1 Shipborne Optical Sensors

3.2.1.A Segmentation and Classification

As computer vision techniques have evolved, their usages for segmentation and object classification in

the Arctic have grown. Most studies focus on the segmentation and classification of multiple ice fea-

tures from optical cameras aboard icebreakers. Zhang et al. [41] developed a novel neural network

architecture coined ”Ice-Deeplab” for multi-class sea ice segmentation. This model modifies the exist-

ing DeepLabV3+ architecture by adding a Convolution Block Attention Module (CBAM) and a modified

decoder structure to achieve 1.5% higher mIoU and 3.1% better sea ice mIoU performance over the

basleine DeepLabV3+ model. In a similar study, Li et al. [7] modified the DeepLabV3+ model architec-

ture for sea ice detection aboard icebreakers. Other studies have combined studies on segmentation

and classification. Dowden et al. [6] [48] achieved impressive results both segmenting and classifying ice

features on a dataset captured from the Nathaniel B. Palmer. Kim et al. [49] both identified and located

multiple ice objects within images aboard two icebreakers. Balasooriya et al. [1] compared PSPNet101

to DeepLabV3 in the semantic segmentation of sea ice and discovered an average inference speed of

0.08s for DeepLabV3 and 1.9s for PSPNet101 while maintaining similar performance (90.21 percent

mIoU vs 90.1, respectively). By creating an ensemble of multiple networks (PSPNet, PSPDenseNet,
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DeepLabV3+, UPerNet), Panchi et al. was able to significantly outperform PSPNet in classification of 14

different classes [12].

As a part of this experiment, Panchi et al. investigated the model’s ability to differentiate between ice

and non-ice objects. The following values in Table 3.4 were computed using the mean ensemble ap-

proach and postprocessing. While this does not provide a 1-to-1 comparison as Panchi’s model utilized

manually labelled training data and postprocessing, it serves as a benchmark for the performances of

the models in this study.

Dataset mIoU Accuracy F1 Score

Avg. of 5-fold cross-validation 0.933 0.957 0.965

Clear Test 0.948 0.963 0.973

Grayscale Test 0.946 0.961 0.972

Vignette Test 0.758 0.829 0.862

Table 3.4: Binary Sea Ice Segmentation Results for Ensemble Network [12]

As weather conditions in the Arctic are variable and often result in image distortion, studies have

focused on remedying the issue. Panchi et al. [50] investigated using deep learning as a ’de-weathering’

algorithm to improve segmentation and classification performances. Pederson et al. [51] explored ice

object classification with added distortion designed to emulate poor weather conditions. Focus has also

been placed on the comparison of ice object classifications by a neural network compared to a human

sea ice expert [52].

3.2.1.B Mapping & Awareness

Since cameras have been placed on ships navigating the Arctic, efforts have been made to study the

impact they could have on mapping and detection sea ice. Sandru et al. [11] present a beginning-to-

end analysis for shipborne sea-ice fields consisting of the capture of images, image pre-processing,

orthorectification of the image, and identification of floes using K-means and dynamic thresholding algo-

rithms. Sandru et al. [17] has further investigated this field using LiDAR sensors aboard the icebreaker

S.A. Agulhas II to map and navigate through ice fields. Utilizing a 3D camera system known as the

Polar Sea Ice Topography REconstruction System (PSITRES), Sorenson et al. [53] was able to create

high-resolution 3D reconstructions of surrounding ice features. Further utilizing convolutional neural net-

works, the team could identify and segment features such as algae, meltponds, and polar bear prints on

the ice. Finally, Veggeland et al. [20] utilized a system with both 3D LiDAR and optical cameras to create

maps of surrounding sea ice with RGB values attributed to the 3D point cloud. These maps capture sea

ice roughness and significant ice features.
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3.3 Image Segmentation with Sparse Ground Truth Data

As fully annotated datasets are time-consuming to create, scientists have investigated strategies to

emulate dense ground truth data with existing data. Often, multi-modal methods can provide incomplete

or sparse data that can be modified to imitate a manually labelled dataset. Maggiolo et al. investigated

this by purposely degrading dense ground truth data using morphological operations. The goal was to

determine the change in performance on remote sensing data if ground truth data could be ’scribbled’

instead of densely annotated. The authors compared results using a few different models (including

their own Cl-FC-CRF) and found that absolute differences in precision revealed roughly an average of

15% performance drop compared to the densely labeled ground truth [54].

These methods are very important in specific domain applications where fully annotated datasets

are rare. In the medical field, Li et al. sought to minimize time spent annotating ground truth segmenta-

tions of Computed Tomography (CT) scans. CT scans contain multiple ’slices’, each of which represent

an image as the subject moves through the machine. At the end, the scans can be compiled into a

3D representation. The authors investigated two different ways of creating pseudo ground truth based

on increasingly sparse manually labeled CT slices. The authors found that up to 95% of the manual

workload could be eliminated without a significant sacrifice in accuracy [55]. In an application similar to

this thesis, Alonso et al. aimed to improve binary segmentation of corals with sparse ground truth infor-

mation. The authors experimented with multiple ways of augmenting the existing sparse ground truth to

gain a better representation of the coral mask. The team utilized superpixel segmentation methods to

increase the resolution of the ground truth masks and incorporated multi-modal information in the form

of fluorescence channels. Combining these methods, the authors were able to improve segmentation

results using a fine-tuned SegNet model and the augmented ground truth [56]. An example of their

methods of ground truth augmentation is seen in Figure 3.2.

3.4 Existing Datasets

For the purposes of image segmentation in general, there are many datasets. 2D datasets such as

PASCAL-VOC, Cityscapes, MS COCO, and Siftflow are often used for measuring object detection and

image segmentation performance [2]. In addition, datasets like KITTI and nuScenes contain both images

and 3D LiDAR point clouds to train networks on 3D segmentation [57].

For the purposes of segmenting images of sea ice, datasets are often captured from ships as they

move through the Arctic. Zhang, Jin et al. [58] used an annotated 814 image dataset of river ice gathered

for the purposes of their study using an Unmanned Aerial Vehicle (UAV). Zhang et al. [41] utilized a 320-

image dataset captured from a Chinese ice-strengthened cargo ship, Tian’en, on a voyage through the

Arctic. Dowden et al. [6] created two datasets of 1090 labeled images and 240 labeled images from
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Figure 3.2: Coral Segmentationi Methods with Sparse Ground Truth: (a) Patch Method around existing GT pixels;
SLIC Superpixel method; SEEDS Superpixel method [56]

two months of footage on the icebreaker Nathaniel B. Palmer as it completed an Antarctic expedition.

Similarly, Li et al. [7] utilized a training dataset of about 1300 images taken from footage aboard the

Nathaniel B. Palmer. Kim et al. [49] used a 370 image dataset for classification and a 390 image dataset

for segmentation assembled from images taken aboard the US Coast Guard icebreaker Healy and the

nuclear-powered icebreaker 50 Let Pobedy.

Panchi et al. created a new dataset for their study with 338 unique images collected from Google,

Yandex, and Baidu along with 37 additional images from the RV Lance during a research cruise in

the Fram Strait [12]. In a similar method, Pederson et al. [51] assembled a dataset of 738 images

from Google, Yandex, publicly available image streams from icebreakers, and private pictures. To map

the surrounding ice fields using LiDAR and optical images, Veggeland et al. [20] utilized a 120-second

trajectory taken from aboard the Kronprins Haakon. Sorenson et al. [53] utilized PSITRES to capture

over 8 million images across three voyages and has made the dataset publicly available (although not

all images are labelled) [59]. For the de-weathering algorithm developed in [50], Panchi et al. created

the first open-source ice image dataset with both clean and weather degraded images [60].

Image datasets tend to differ due to the angle and location of cameras placed onboard the icebreak-

ers. Two images from the voyages of the Nathaniel B. Palmer and Tian’en are included in Figure 3.3.

While optical segmentation and LiDAR mapping have been implemented on sea ice, to the best of the

28



(a) Image from Nathaniel B. Palmer Cruise [6] (b) Image from Tian’en Cruise [41]

Figure 3.3: Dataset Images from Sea Ice Segmentation Studies

author’s knowledge there is no existing dataset that contains both images and LiDAR point cloud data

of sea ice.

3.5 Literature Gaps

While there are investigations into image segmentation using sparse datasets, these are fewer and

dedicated to specific use cases. Furthermore, the reasons why the data are sparse and the strategies

to combat this differ in most papers. Specifically, a method of automated labelling using LiDAR point

cloud data in the Arctic has not yet been pursued to the author’s knowledge. However, the segmentation

and classification of sea ice is a rapidly growing field as more focus is placed on the shrinking Arctic ice

sheet.
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4.1 Dataset Creation

Using a payload containing an optical camera and LiDAR designed by Oskar G. Veggeland, data were

captured during a cruise through the Arctic. The optical camera used for this dataset was a FLIR blackfly

GigE optical camera with a resolution of 1440x1080. Coupled with this was a Mid-70 LiDAR from Livox.

The payload was placed on the prow of the Norwegian icebreaker Kronprins Haakon on its voyage in

the summer of 2023 [20]. Images of the apparatus and its placement are displayed in Figure 4.1, while

the architecture of the payload is shown in Figure 4.2.

Figure 4.1: Camera-LiDAR Payload Designed by Oskar G. Veggeland [20]

Figure 4.2: Architecture of Camera-LiDAR Payload [20]
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4.2 Dataset Preprocessing

After the dataset was accumulated and the LiDAR point cloud translated to the camera’s perspective,

the LiDAR point clouds were processed in three different ways. One example of an optical image, the

accompanying LiDAR point cloud, and the LiDAR FOV mask before any data processing is shown in

Figure 4.3.

(a) Optical Image (b) Unprocessed LiDAR Point Cloud (c) LiDAR FOV Mask

Figure 4.3: Example of an Unprocessed LiDAR Point Cloud
The gray area in 4.3c represents the ’active’ zone of the LiDAR

As seen in Figure 4.3, the LiDAR point cloud represents the sea ice as seen in the optical image

relatively well. There are some features that can cause problems, such as the sparsity of the point

cloud closer to the LiDAR apparatus and the classification of some meltponds as water. The size for all

images and masks was chosen to be 256 x 256 pixels, as this is compatible with the SegFormer model

architecture, is computationally light, and has precedence in the literature [49]. The data preprocessing

was performed on the original image size of 1430 x 1063 pixels before being resized to 256 x 256 pixels

using OpenCV’s resize function with linear interpolation.

4.2.1 Raw Dataset

The Raw dataset represents the most basic preprocessing that is be done to create an ice mask from

the LiDAR point cloud. This process forms the basis for the following two methods and is based on the

assumption that if the LiDAR receives a point in the back-scatter, there is ice at that point. Therefore, if

there is a LiDAR point (no matter the intensity) it is converted to an ’ice’ pixel for the binary ground truth

mask. The formulation is as follows.

Let I(x, y) represent the intensity of a pixel at position (x, y) in the grayscale image of the LiDAR

point cloud. A simple thresholding operation is applied, where each pixel is transformed based on its

intensity.

The thresholded image IT (x, y) is defined as:
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IT (x, y) =

{
1, if I(x, y) > 0 (4.1a)

0, otherwise (4.1b)

Thus, if the pixel value I(x, y) is greater than 0, it is set to 1 (’ice’). Otherwise, it is set to 0 (’water’).

4.2.2 Morphological Dataset

The second dataset is based on the binary threshold implemented in the Raw dataset with the addition of

one iteration of the morphological process closing. This step was taken to fill the holes that are present

in the raw LiDAR point cloud. The kernel used is a rectangle with a 3x3 pixel size. This process involves

two steps:

1. **Dilation**: The binary thresholded image’s white regions are expanded by checking each pixel’s

3x3 neighborhood. If any pixel in the neighborhood is white (1), the center pixel is set to white as well.

Mathematically, the dilation D(IT )(x, y) is:

D(IT )(x, y) = max{IT (x+ i, y + j) | −1 ≤ i, j ≤ 1} (4.2)

Thus, the maximum value of the pixels in a 3x3 neighborhood around (x, y) is taken.

2. **Erosion**: After dilation, the white regions are shrunk by again checking each pixel’s 3x3 neigh-

borhood. Now, the center pixel is set to white only if all pixels in the neighborhood have a value of

1.

The erosion E(D(IT ))(x, y) is:

E(D(IT ))(x, y) = min{D(IT )(x+ i, y + j) | −1 ≤ i, j ≤ 1} (4.3)

This takes the minimum value in the 3x3 neighborhood.

The final image after applying both dilation and erosion (the closing operation) is denoted as:

IC(x, y) = E(D(IT ))(x, y). (4.4)

4.2.3 Otsu-Hybrid Method

The third and most complex of the datasets was created to improve the quality of the ground truth

label. This method is a combination of the binary threshold employed in the Raw dataset and an image

threshold performed on the grayscale version of the input image with Otsu’s binarization. The process

is as follows.
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A binary mask Mtopo(x, y) is first created from the LiDAR point cloud, similar to the Raw Dataset:

Mtopo(x, y) =

{
1, if topo(x, y) > 0, (4.5a)

0, otherwise. (4.5b)

Applying Otsu’s thresholding method on the grayscale input image gray image(x, y) to return a binary

image Motsu(x, y):

Motsu(x, y) =

{
1, if gray image(x, y) > Totsu, (4.6a)

0, otherwise, (4.6b)

where Totsu is the threshold computed using Otsu’s method.

A combined mask Mice(x, y) is then created by combining Mtopo(x, y) and Motsu(x, y). This is done

by checking if both masks have a value of 1 at the same pixel location:

Mice(x, y) =

{
1, if Mtopo(x, y) +Motsu(x, y) > 1, (4.7a)

0, otherwise. (4.7b)

Finally, the same morphological closing operation seen in the Morphological Dataset is applied:

The final closed binary mask Mclosed(x, y) is:

Mclosed(x, y) = E(D(Mice))(x, y) (4.8)

Where E and D represent the erosion and dilation steps as a part of the closing operation.

This method aims to take advantage of the best aspects of each mask. The LiDAR point cloud is

impervious to issues that can affect image thresholding like brightness, contrast, and blurriness. The

image thresholding often results in well-defined object boundaries that the motion blur in the LiDAR point

cloud lacks. Combined, the result is not perfect but tends to keep some of the positive aspects of each

method. Figure 4.4 displays a good example of the strengths of this method. The thresholding operation

defines the object boundaries but misclassifies the sky as ice, while the final result in the hybrid method

removes the false positives.

Three examples of an optical image and the three preprocessing methods are displayed in Figure

4.5.
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Optical Image Otsu’s Threshold Otsu-Hybrid Method

Figure 4.4: Otsu-Hybrid Method Example

Optical Image Raw Dataset Morph Dataset Otsu Dataset

Figure 4.5: Dataset Preprocessing Examples
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4.2.4 Manually Labelled Ground Truth

To provide a measure of comparison for the three datasets described, a manually labelled test set was

assembled from two sources. A colleague working on similar research in computer vision, Nabil Panchi,

provided a dataset of 186 labelled optical images, referred to as the GoNorth Dataset. These images

are from the same cruise as the dataset used for this thesis and thus can be integrated to measure

the performance of the preprocessing methods. The images are cropped, but still provided a valuable

measuring point to evaluate how close the automated labelling processes come to the manually-labelled

ground truth. The author of this paper additionally labelled a 175 image subset using the online software

Roboflow, from here on referred to as the Roboflow Dataset.

The manually labelling process presented a few challenges in the classifications of ice features such

as meltponds, flooded ice, undersea ice, and sea ice rubble. Ideally, these features should occupy

separate classes but in this binary segmentation task they had to be delineated as either ice or water.

For the purposes of this thesis, any feature that was not open water was labelled as ice. Figure 4.6

contains examples of the aforementioned ice features in the dataset. It is important to mention that even

within binary classification, there are differences in labelling methods.

(a) Meltpond

(b) Flooded Ice

(c) Undersea Ice (d) Ice Rubble

Figure 4.6: Manually Labelled Ice Features

4.2.5 Class Imbalances

Analyzing the class balances in any machine learning task is important, as unbalanced classes are likely

to lead to incorrect inferences from a model. Table 4.1 displays the percentages of positive and negative

pixels within the LiDAR FOV mask for each dataset.

There exists a majority of ice pixels for the Morphological dataset, while the sparsity of the Raw

dataset and the image thresholding method of the Otsu dataset decreases the ratio of positive pix-

els. Both manually labelled datasets contain higher percentages of ice pixels than the Raw and Otsu

datasets.
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Dataset Ice Pixels (%) Water Pixels (%)

Raw 0.42 0.58

Morphological 0.61 0.39

Otsu 0.41 0.59

goNorth 0.51 0.49

Roboflow 0.59 0.41

Table 4.1: Class Imbalances

4.3 Dataset Split

As all of the images used are from the same research cruise, they are taken from the same angle aboard

the ship with generally similar weather conditions. The images are taken frequently, meaning one image

and the ones immediately adjacent in time are extremely similar. If the entire dataset is split randomly, it

is likely that similar images could be present in both the training and testing sets. This can lead to data

leakage, artificially improving test set performance.

4.3.1 Train-Validation-Test

One method of avoiding data leakage was splitting the training, validation, and test sets by trajectory.

During the cruise, the payload was not recording for the entire time. Instead, the data were split into dif-

ferent ’chunks’ representing different times when the payload was active, called trajectories. To promote

the least data leakage possible, images from the same trajectory are not present in both the training and

testing sets. A table with each trajectory and number of images, along with the distinction for each split,

is displayed in Table 4.2.

This resulted in a total dataset of 2,111 images with 1,464 in the training set, 317 in the validation

set, and 330 in the testing set. This is roughly a 70,15,15 split (69.35% train, 15.02% validation, 15.63%

test). Table 4.3 aims to analyze the split based on the average sea ice pixel proportion.

As the Raw dataset is unmodified (no ’ice’ pixels added), it is likely the best representation for the

average amount of sea ice present in each dataset. It is clear the datasets are not perfectly balanced as

the SIPP decreases from train to validation to test.

4.3.2 Data Augmentation

Data Augmentation was performed using the Albumentations package in Python. The training augmen-

tations are listed in Table 4.4.

The VerticalFlip augmentation is added to prevent the model from disregarding the top section of
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Trajectory
Number

Number
of Images Split

21 98 train

22 20 validation

23 184 train

24 113 train

26 112 train

27 6 train

28 2 train

29 11 test

30 53 train

31 211 test

40 116 train

49 178 validation

72 260 train

73 37 train

75 108 test

76 180 train

77 5 train

78 3 train

79 9 train

80 12 train

81 215 train

82 59 train

91 119 validation

Table 4.2: Trajectory Numbers and Associated Dataset Split

SIPP
Split # of Images Raw Morph Otsu

train 1464 0.49 0.69 0.45
val 317 0.34 0.39 0.29
test 330 0.22 0.45 0.36

Table 4.3: Dataset Split SIPP Values

38



Augmentation Probability Description

HorizontalFlip 0.5 Randomly flips the sample horizontally

VerticalFlip 0.2 Randomly flips the sample vertically

RandomBrightnessContrast 0.3 Randomly changes the brightness and contrast,
for exposure to different lighting conditions

RandomToneCurve 0.2 Randomly changes relationship between light
and dark areas of the image by adjusting the tone curve

RandomResizedCrop 0.2 Randomly crops a portion of an image
and resizes to original image size

Table 4.4: Training Data Augmentations

an image as it is normally masked out in the loss function by the LiDAR FOV. The brightness contrast

and tone curve augmentations are efforts to increase the models’ robustness to weather and lighting

conditions which are variable in the Arctic. Finally, the resized crop is designed to give the models

experience on different sized ice features.

4.4 Models

The three models used for this study were the U-Net [27], DeepLabV3+ [29], and the SegFormer visual

transformer [37]. In each of these cases, the models were modified to have a single output class. The

U-Net and DeepLabV3+ models were imported via Segmentation Models Pytorch. This package allows

customization in the encoder, encoder weights, input channels, and output classes. For the sake of

consistency in the U-Net and DeepLabV3+ models, a ResNet101 encoder [61] with pretrained ImageNet

[38] weights was used along with three input channels and one output class. Segmentation Models

Pytorch enables the customization in output classes by implementing a SegmentationHead module that

contains one Conv2d layer convolving the output to the desired number of classes.

For SegFormer, the simplest version (MiT-B0 encoder) was used as it has the fewest parameters and

thus the lowest memory usage. This SegFormer model was loaded from the HuggingFace repository,

with num labels parameters set to 1. In this case, the hierarchical transformer was pretrained on the

ImageNet-1k dataset [38], then the decoder head was added and the model fine-tuned on the ADE20K

dataset [62] at a 512x512 resolution [63]. A feature of the SegFormer model is an output size 1
4 the size

of the input. Thus, the output logits were upsampled from a size of 64x64 pixels to the input resolution of

256x256 pixels using the torch.nn.functional.interpolate function. This ensures proper loss calculation

as the labels are also of size 256x256 pixels.
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4.4.1 Loss Function

The loss function used for the training of these models was the BCE Loss with logits. An important

part of this loss function was the addition of the LiDAR FOV mask. This FOV mask allows the model

to be trained only on areas of the image where the LiDAR is ’active’ and avoid class imbalance and

incorrect labels. For implementation in code, the BCE loss was calculated and then masked prior to

back-propagation. Implementation is displayed below, where l represents the logits (predicted values),

y represents the true labels, L(l,y) signifies the loss function (binary cross-entropy), and m ∈ {0, 1} the

mask.

First, the loss is computed for each element of the batch:

L = L(l,y) (4.9)

Then the LiDAR FOV mask is applied to the loss to ensure that only elements where the mask m = 1

contribute to the loss:

Lmasked = L ·m (4.10)

Finally, the mean loss is calculated then back-propagated, ensuring that the sum of the loss is nor-

malized by the number of valid mask elements:

mean loss =

∑
Lmasked∑

m
(4.11)

After the loss was back-propagated, a sigmoid function was applied to the output logits to calculate

the probabilities. Then a threshold of 0.5 was applied to the output of the sigmoid to compute the

predicted ice mask.

4.5 Training and Evaluation

PyTorch was utilized for training the models. A NVIDIA RTX 3060 Laptop GPU was the main device used

for training equipped with CUDA 11.2. The Stochastic Gradient Descent (SGD) optimizer was utilized

along with a learning rate scheduler, ReduceLROnPlateau.

The metrics used for training of the models can be found in Table 4.5.

For purposes of evaluating the training and performance of the models, metrics were recorded during

training and test set evaluations. For the training of the models, BCE Loss, IoU, and Dice score were

recorded and averaged across each epoch for both the training and validation sets. For the evaluation

of the test set, BCE Loss, IoU, Dice score, pixel accuracy, precision, recall, and SIPP (of both label

and prediction) were recorded for each sample. Each model was first trained on each of the three
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Number of Epochs 30

Batch Size 16

Initial Learning Rate 5x10−3

Criterion BCEWithLogitsLoss(reduction=’none’)

Optimizer SGD

Optimizer Momentum 0.9

Scheduler ReduceLROnPlateau

Scheduler Factor 0.5

Scheduler Patience 5 epochs

Scheduler Metric Validation Loss

Table 4.5: Training Parameters

preprocessed datasets. Then each trained model was evaluated on the manually labelled ground truth

dataset to see if any of the preprocessed datasets could approximate the manually labelled equivalent.
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5.1 Evaluation of Preprocessed Datasets

5.1.1 Raw and Morphological Datasets

The Raw dataset is the most basic set of preprocessing done to the returned LiDAR point cloud. As the

Morphological dataset is the same as the Raw dataset with the addition of one iteration of closing, the

errors are largely the same in both sets.

Figure 5.1 shows 3 examples of the datasets where the shortcomings are most evident.

(a)

(b)

(c)

Figure 5.1: Raw & Morphological Dataset Shortcomings
Areas highlighted in red represent dataset shortcomings

Figure 5.1a displays an example of motion blur. In the Raw and Morphogical datasets, there is an

artifact from a piece of ice that has already passed through the camera frame, but remains in the LiDAR

FOV because of the difference in capture rates. This introduces the chance that the model will learn to
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predict false positives. In addition to the motion blur, the sparsity of the Raw point cloud is evident in

Figure 5.1a. Even with the addition of the closing morphological filter, there remains very sparse areas of

ice especially close to the camera. Similar to Figure 5.1a, Figure 5.1b shows the negative effect motion

blur can have on the ground truth labelling. Despite the area highlighted in red consisting of separate

ice floes, the motion blur present in the LiDAR system blends them together. This gives the impression

of one large floe and over-predicts ice, which again could influence false positives in model predictions.

The last example in Figure 5.1c contains both the effects of motion blur and sparsity as well. In all of

these examples, the Otsu dataset seems to perform a better job. The hybrid combination of point cloud

and image threshold eliminates the false artifact in Figure 5.1a and better defines the edges of the ice

floes in Figures 5.1b & 5.1b. However, this dataset still suffers from the point cloud sparsity mentioned

earlier.

5.1.2 Otsu-Hybrid Dataset

Despite the differences in appearance of the ground truth samples in Figure 4.5, the Otsu dataset is still

heavily related to the Raw dataset. Since mask points were only kept if they were present in both the

Raw mask and the Otsu image threshold, the Otsu threshold succeeds in some areas that the Raw and

Morphological datasets fail, but fall short in other samples. Figure 5.2 displays three examples of the

weaknesses of the Otsu dataset while Figure 5.3 shows two images where the desired ground truth is

achieved.

The first image Figure 5.2a displays a vignetting effect that is not uncommon in when using image

thresholding methods. Usually, the edges of an image appear to be slightly darker than the center.

Depending on the image and the severity of the vignetting, Otsu thresholding can interpret the edges as

water. When it occurs, it impacts the Otsu mask to a great degree by adding in false negatives. This has

previously been investigated, specifically a de-vignetting filter is used to some success in [11]. Figure

5.2b is another shortcoming of image thresholding methods. Namely, shadows and darker shades of

ice or ice near the surface tend to be classified as water. This is problematic as it tends to classify ice

features such as ridges as partly water, creating an excess of false negatives. In the final example,

5.2c, the Otsu image thresholding method classifies most meltponds as water. In addition, it classifies

an raindrop on the camera frame as ice. This is partly due as well to the motion blur seen in the raw

mask, but nevertheless remains a failure of the preprocessing method. The classification of meltponds

as water is another example of an effect that will likely cause the predictions of false negatives.

However, this method succeeds in other samples. Figure 5.3a shows how the hybrid nature of

the data preprocessing avoids classifying the sun glare as ice. Without the LiDAR point cloud, Otsu’s

binarization would classify this area and other bright areas as ice. Furthermore, both 5.3a and 5.3b

demonstrate the ability of the Otsu preprocessing method to correctly define the edges of ice floes.

44



(a)

(b)

(c)

Figure 5.2: Otsu Dataset Shortcomings
Areas highlighted in red represent dataset shortcomings
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(a)

(b)

Figure 5.3: Otsu Dataset Successes

This proves especially useful in cases where the Raw LiDAR point cloud possesses significant motion

blur. The hybrid nature of this dataset does produce a significant amount of false negatives, but clearly

reduces the amount of false positives.

5.1.3 Comparison to Manually Labelled Datasets

The two manually labelled datasets are referred to as GoNorth and Roboflow. The GoNorth dataset

consists of 186 images from the Kronprins Haakon voyage that were cropped and labelled by Nabil

Panchi. The Roboflow dataset consists of 175 images from same voyage labelled by the author in

Roboflow. The 175 images are a subset of the testing split dictated in Table 4.2. To compare, the

preprocessing methods were applied to the test set samples and the masks compared. The purpose of

this section is to evaluate how well the three preprocessed datasets emulate manually labelled sea ice

images.

Table 5.1 shows that all three datasets do not fully approximate manual labelling, but the Morpho-

logical and Otsu datasets come closer than the Raw. Their scores mainly differ in the classification of

false positives and false negatives. The Morphological dataset scores the lowest in precision but the

highest in recall. Thus, this dataset is predicting an excess of false positives but has the lowest amount

of false negatives. The Otsu dataset succeeds in the precision category, eliminating most of the false

positives but lags significantly in recall due to false negatives. Differences in performance between the
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Subset Dataset IOU DICE Pixel
Accuracy Precision Recall

Raw 0.54 0.68 0.77 0.83 0.62
GoNorth Morphological 0.66 0.78 0.83 0.81 0.79

Otsu 0.68 0.79 0.85 0.97 0.69
Raw 0.29 0.42 0.58 0.79 0.30

Roboflow Morphological 0.53 0.66 0.75 0.78 0.59
Otsu 0.52 0.65 0.75 0.90 0.53
Raw 0.42 0.55 0.68 0.81 0.47

Combined Morphological 0.60 0.72 0.79 0.80 0.69
Otsu 0.60 0.72 0.80 0.93 0.61

Table 5.1: Manually Labelled Dataset Evaluation
Bold numbers represent the best performances for each subset between the three preprocessed datasets

two testing datasets are due to slight differences in the manual labelling. Figure 5.4 displays the two

different labelling methods on the same input image. The main difference is cropping out of the majority

of the LiDAR FOV mask, slightly changing the perspective.

Optical Image Manual Label Raw Dataset Morph Dataset Otsu Dataset

(a) Roboflow Subset

(b) GoNorth Subset

Figure 5.4: Manual Label Dataset Differences with LiDAR FOV Mask Highlighted
Areas highlighted in red represent areas masked out by the LiDAR FOV mask

The confusion matrices presented in Figure 5.5 confirm the shortcomings seen in Figures 5.1 and

5.2. Namely, the Raw dataset contains a large amount of false negatives. This is expected due to

the sparsity of the LiDAR point cloud; the few returned LiDAR points vastly under-represent the ice

features in the images. The Morphological dataset is an improvement, increasing the number of true

positives and reducing the false negatives. However, this comes at the cost of overestimating ice due

to motion blur and increases the number of false positives. Finally, the Otsu dataset vastly decreases

the excess false positives of the Morphological dataset as it correctly defines ice floe edges. The cost

of performance is a significant increase in false negatives due to the misclassification of shadows and

meltponds as water.
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Figure 5.5: Preprocessed Dataset Confusion Matrices

5.2 Model Training

All three models were trained on each dataset for 30 epochs using a batch size of 16 along with the

parameters mentioned in Table 4.5. Below is the measured BCE loss across each dataset. In this

section and all of the following, the area masked out by the LiDAR FOV mask was not included in metric

calculations.

Figure 5.6: Training Losses for Models on each Dataset

It is clear that the models presented in Figure 5.6 learn more on the Morphological and Otsu datasets

than the Raw. In all cases, validation loss begins lower but gradually converges with the training loss.

This is likely due to the data augmentation performed on the training set that is absent in the validation

split. Data augmentation artificially increases the difficulty of the training split to help the model general-

ize better. Most evident in the Morphological dataset, there seems to be overfitting as the training loss

continues to decrease as the validation loss stays relatively constant. In the Otsu dataset, U-Net seems

to minimize the training loss most effectively compared to its peers. In the other datasets, this difference

is less severe.
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The decrease in losses over the training period in the Morphological and Otsu datasets is likely due

to better representation of the ground truth. With some of the sparsity of the point cloud filled in, the

models are increasingly able to distinguish between sea ice and water. In simple terms, this binary

segmentation task is finding a correlation between the ’lighter’ sea ice pixels in the images and the

preprocessed ground truth. Thus, the closer the preprocessed datasets emulate manually labelled ice

masks, the quicker these models will learn to properly define the sea ice objects. The averaged results

of the models’ performance throughout training are displayed in Table 5.2.

Loss IOU DICE
Model Dataset Train Val Train Val Train Val

Raw 0.41 0.37 0.64 0.43 0.78 0.59
U-Net Morph 0.21 0.23 0.88 0.71 0.94 0.83

Otsu 0.18 0.18 0.85 0.73 0.92 0.84
Raw 0.42 0.36 0.65 0.48 0.78 0.64

DeepLabV3+ Morph 0.21 0.27 0.88 0.69 0.93 0.81
Otsu 0.21 0.19 0.82 0.71 0.90 0.82
Raw 0.43 0.45 0.64 0.36 0.78 0.49

SegFormer Morph 0.24 0.29 0.86 0.70 0.93 0.82
Otsu 0.22 0.18 0.81 0.70 0.90 0.81

Table 5.2: Training Statistics by Model
Bold numbers represent the best performances for each model between the three preprocessed datasets

The averaged training results in Table 5.2 agree with the assertion that the models have a difficult

time learning to minimize loss on the Raw dataset. Overall, performances are nearly identical in terms

of training loss between the Morphological and Otsu datasets. In a significant number of cases, the best

training IoU belongs to the Morphological dataset while the Otsu dataset provides the best validation IoU.

This supports the overfitting seen in the Morphological dataset in Figure 5.6. Additionally, the models

likely can learn the image thresholding methods implemented in the Otsu dataset. This is reinforced by

the low and constant nature of the validation losses in the Otsu dataset training curves.

5.3 Evaluation of Model Predictions

The trained models’ predictions were then tested on each of the two manually labelled datasets. Table

5.3 contains the averaged results for each combination of model and dataset. The best IoU scores for

each subset are produced by models trained on the Morphological dataset. However, the differences

from model to model on the Morphological and Otsu datasets are small, suggesting the different ar-

chitectures do not have a significant impact on the performance. Confirming the datasets’ respective

strengths and weaknesses, the Morphological-trained models consistently score the highest in recall

while the Otsu-trained models succeed in precision. In every case, the models IoU scores are higher on

the goNorth subset than the Roboflow subset. The correlation suggests the models perform better when
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the camera perspective is shifted downward towards the ice, eliminating faraway ice features and the

horizon. The overall best performer was the U-Net model trained on the Morphological dataset. Despite

performing the lower in Precision, its Recall and IoU scores are the highest. The SegFormer model

trained on the Otsu dataset scores impressively on precision, largely avoiding the prediction of any false

positives.

Subset Model Dataset IOU DICE Pixel
Accuracy Precision Recall

Raw 0.48 0.59 0.74 0.79 0.51
U-Net Morph 0.73 0.82 0.86 0.86 0.83

Otsu 0.61 0.72 0.82 0.90 0.62

Raw 0.56 0.67 0.78 0.82 0.59
Roboflow DeepLabV3+ Morph 0.65 0.75 0.84 0.80 0.73

Otsu 0.61 0.72 0.82 0.92 0.61

Raw 0.42 0.54 0.66 0.85 0.44
SegFormer Morph 0.70 0.78 0.86 0.81 0.79

Otsu 0.66 0.78 0.82 0.98 0.66
Raw 0.64 0.73 0.82 0.87 0.72

U-Net Morph 0.78 0.87 0.88 0.82 0.95
Otsu 0.76 0.85 0.89 0.96 0.78

Raw 0.73 0.82 0.87 0.91 0.81
goNorth DeepLabV3+ Morph 0.78 0.86 0.88 0.83 0.92

Otsu 0.77 0.86 0.90 0.96 0.80

Raw 0.68 0.76 0.83 0.89 0.74
SegFormer Morph 0.77 0.86 0.88 0.84 0.90

Otsu 0.74 0.84 0.89 0.97 0.76
Raw 0.56 0.66 0.78 0.83 0.62

U-Net Morph 0.76 0.85 0.87 0.84 0.89
Otsu 0.69 0.78 0.86 0.93 0.70

Raw 0.65 0.75 0.83 0.87 0.70
Combined DeepLabV3+ Morph 0.72 0.80 0.86 0.81 0.83

Otsu 0.69 0.79 0.86 0.94 0.71

Raw 0.55 0.65 0.74 0.87 0.59
SegFormer Morph 0.73 0.82 0.87 0.83 0.84

Otsu 0.70 0.81 0.85 0.97 0.71

Table 5.3: Trained Models’ Performance on Manually Labelled Datasets
Bold numbers represent the best scores of any model/dataset combination on a manually labelled subset

The confusion matrices for U-Net model predictions in Figure 5.7 support the results in Table 5.3 and

bear similarity to the dataset confusion matrices in Figure 5.5. The Morphological dataset trained U-Net

has both the highest percentage of false positives but also the highest percentage of true positives. It

scores significantly lower in the percentage of false negatives, whereas the Raw and Otsu trained U-

Nets have higher values. The U-Net trained on its respective datasets struggles from the same issues

as the datasets: false negatives due to sparsity in the Raw, misclassification of shadows and meltponds
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as water in the Otsu, and an over-representation of ice in the Morphological.

Despite the similarities between the dataset and the U-Net prediction confusion matrices, there are

a few important differences. In all three datasets, the percentage of false negatives decreased from

dataset to prediction. Additionally, there is an increase in true positives from dataset to prediction. This

trend is encouraging and suggests that the models have a slightly better understanding of the scene

than the automatically labelled datasets.

Figure 5.7: U-Net Prediction Confusion Matrices

Figure 5.8 shows three correlations between variables for a U-Net trained on each of the three

datasets. Figure 5.8a presents the correlation between the proportion of ice in the input image and the

corresponding loss on that image. In both the Raw and Otsu trained U-Net models, the loss increases

with the proportion of sea ice. This could suggest a latent underprediction of ice or a difficulty in defining

the ice. It is likely due to the to the fact that as the percentage of ice increases, so will the number of false

negatives as was seen in the dataset confusion matrices (5.5). The same pattern is shown in the pixel

accuracy vs. SIPP Label plots (5.8b). Specifically in the Raw-trained U-Net, there are cases with high

SIPP that result in very low pixel accuracy scores. This behavior is not as severe in the Otsu-trained

U-Net. The relationship between the sea ice proportion of the prediction and the label (5.8c) further

confirm this behavior. The Otsu-trained U-Net predictions lie completely below the 1-to-1 trendline,

confirming the high precision scores in all Otsu-trained models (5.3). The Raw-trained model displays

similar behavior within the Roboflow subset, but it is much more accurate on the GoNorth subset. The

Morphological trained U-Net model displays a ’triangular’ behavior, reaching its max loss and lowest pixel

accuracy scores near 0.5 SIPP. This model likely heavily overpredicts ice as the SIPP rises, a behavior

that does not have the same affect on performance when the images have a very high percentage of

ice. Figure 5.8c aligns with this assertion, with most of the samples above the 1-to-1 trendline.

Conclusions can additionally be made within the manually labelled subsets. In the Raw- and Otsu-

trained models, the predictions on the GoNorth subset lie much closer to the ideal 1-to-1 relationship

between labelled and predicted SIPP. This behavior suggests that these models struggle with predicting
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areas close to the LiDAR FOV mask. When this area is cropped out of the input images, the models

perform significantly better. This behavior is not entirely unexpected, as the models received no infor-

mation from loss back-propagation on these areas. In the Morphological-trained model predictions, the

GoNorth subset seems to suffer more severely from the overprediction of ice than its Roboflow counter-

part. This suggests that the Morphological-trained U-Net tends to overpredict on areas within the LiDAR

FOV mask, a behavior that is mediated with the addition of areas closer to the mask (further from the

camera).

The model predictions on the Roboflow subset in Figure 5.9 visualize the assertions stated above.

The predictions were taken from each dataset’s best performing model: DeepLabV3+ for the Raw

dataset, U-Net for the Morphological dataset, and SegFormer for the Otsu dataset. The overpredic-

tion of ice in the Morphological-trained model is especially evident, with the blending together of multiple

ice floes into one mass. The Otsu-trained model correctly defines the floe borders but mislabels parts

of floes that are slighly underwater. The Raw-trained model struggles in general with the prediction, but

clearly performs worse close to the camera as a result of the severe sparsity present in the point clouds

in this location. Despite areas far from the camera being removed from loss back-propagation by the

LiDAR FOV mask, the models still predicted ice in these areas. The bright pixel values for foggy and

sunny skies likely indicated to the models that ice was present, but they struggled to correctly define

boundaries. Poor performance in this section of the images is to be expected, as the models did not

learn on this portion of the input.

The predictions for the GoNorth dataset in Figure 5.10 offer more insight. With the camera focused

more closely on the ice features, the Raw-trained model produces an accurate prediction, albeit with

some false negatives and misclassification of undersea ice. The Morphological-trained model again

combines ice floes together but correctly predicts areas of undersea ice. Finally, the Otsu-trained model

incorrectly classifies meltponds as open water but correctly predicts the above-water ice floe edges. In

general, the model predictions confirm the assertions made in Tables 5.1,5.3 and Figures 5.5, 5.7. To

summarize, models trained with the Raw and Otsu datasets suffer from overprediction of false negatives

but score highly in precision. Models trained on the Morphological dataset overpredict false positives

but score highly in IoU and recall.

Overall, the metrics presented in this section suggest that models trained on the Morphological

dataset produce the highest results. Yet, Otsu-trained model predictions have their merits: low prediction

of false positives and correct boundary detection. The Raw-trained models struggle with predictions on

the Roboflow subset but increase in performance when viewing the ice features closer in the GoNorth

subset.

The choice of preprocessed dataset will ultimately come to a decision on use case. If a high recall

is desired where few ice pixels are incorrectly classified as water, the Morphological dataset will be the
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(a) SIPP Label vs. BCE Loss

(b) SIPP Label vs. Pixel Accuracy

(c) SIPP Label vs. SIPP Prediction

Figure 5.8: Performance Correlations
The black dotted line in 5.8c represents a 1-to-1 correlation trendline
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Optical Label Prediction Pix Class

(a) Raw-trained DeepLabV3+ Prediction

(b) Morphological-trained U-Net Prediction

(c) Otsu-trained SegFormer Prediction

Figure 5.9: Roboflow Image Predictions

Gray shading represents predictions outside the LiDAR FOV mask. The last column colors the prediction based on
pixel classification: Green:TP, Red:FP, Blue:TN, Yellow:FN
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Optical Label Prediction Pix Class

(a) Raw-trained DeepLabV3+ Prediction

(b) Morphological-trained U-Net Prediction

(c) Otsu-trained SegFormer Prediction

Figure 5.10: goNorth Image Predictions

Gray shading represents predictions outside the LiDAR FOV mask. The last column colors the prediction based on
pixel classification: Green:TP, Red:FP, Blue:TN, Yellow:FN
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best. If instead precision is the priority, with its few false positives, the Otsu dataset is likely the best

option.

5.4 Model Comparison

While the main purpose of this experiment was to compare automated labelling techniques, the perfor-

mances of U-Net, DeepLabV3+, and SegFormer differ. Viewing the statistics for the combined labelled

dataset in Table 5.4, the models display similar performance on each dataset. The largest differences in

performance come from the Raw-trained DeepLabV3+ compared to its peers. This is likely due to the

atrous spatial pyramid pooling present in DeepLabV3+ that allows multiple receptive fields to be incorpo-

rated into model predictions. Utilizing multiple rates within the atrous convolutions, greater spatial context

could be incorporated into the model to overcome the sparsity of the Raw dataset. The Morphological-

trained U-Net model is the best overall performer with an IoU of 0.76. The the skip connections present

in the U-Net likely helped to maintain important information that is normally lost during down-sampling

in the encoder. As it was originally designed for medical image segmentation, U-Net has proven to be

exceptional at defining object boundaries and classifying images at the pixel level [27]. Despite using the

lightest-weight SegFormer architecture, the Morphological- and Otsu-trained SegFormer models scored

competitively on the combined manually labelled subset. Its hierarchal transformer encoder is able to

capture both the local and global context to inform its predictions. Because of the lightweight MLP

decoders and lack of positional embeddings, the SegFormer consistently scores the highest inference

times.

Dataset Model IOU DICE Pixel
Accuracy Precision Recall Inference Time

(imgs/s)

U-Net 0.56 0.66 0.78 0.83 0.62 48.15
Raw DeepLabV3+ 0.65 0.75 0.83 0.87 0.70 49.40

SegFormer 0.55 0.65 0.74 0.87 0.59 57.58

U-Net 0.76 0.85 0.87 0.84 0.89 49.38
Morph DeepLabV3+ 0.72 0.80 0.86 0.81 0.83 47.89

SegFormer 0.73 0.82 0.87 0.83 0.84 58.88

U-Net 0.69 0.78 0.86 0.93 0.70 47.62
Otsu DeepLabV3+ 0.69 0.79 0.86 0.94 0.71 48.40

SegFormer 0.70 0.81 0.85 0.97 0.71 58.99

Table 5.4: Combined Manually Labelled Subset Performance by Model
Bold numbers represent the best performance on the combined manually labelled test set for all models trained on

the same preprocessed dataset

Overall, all three models produce similar performances. While each has its strengths, these results

come from an extremely small sample size: 30 epochs with a batch size of 16 using a training dataset
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of under 2000 images. Therefore, meaningful conclusions about the general applicability of these three

model types cannot be made solely from this study.
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6
Conclusion

Contents
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This graduate thesis presents three different methods of the automated labelling of Arctic sea ice

using multi-modal information provided by LiDAR. Three different models were tested on these datasets

to evaluate if the preprocessed datasets could emulate manually labelled ground truth images. While

the performances were not near state-of-the-art sea ice segmentation as seen in Table 3.4 [12], they

are encouraging enough to warrant further investigation. After minimal training on a small dataset, U-

Net was able to acheive an IoU score of 0.76 on a 361 manually labelled image test set. SegFormer

and DeepLabV3+ performed similarly with IoU of 0.73 and 0.72 respectively. SegFormer was able to

produce the best inference times, at almost 59 images per second.

Quantitative comparisons show that the Raw dataset did not provide an accurate depiction of the

labelled ground truth because of the excessive sparsity present in the Raw point cloud. The Morpholog-

ical dataset trained models performed the best in IoU and recall, but suffered from overprediction of ice

due to motion blur present in the point clouds. The Otsu-Hyrbid method defined ice object boundaries,

but suffered from misclassifications of meltponds and shadows as open water. Otsu-trained models

performed nearly as well as the Morphological trained models in IoU, but greatly outpaced them in pre-

cision due to the lack of false positives. There was a clear correlation between the the characteristics

of each preprocessed dataset and the predictions from models trained on them. However, there was

an encouraging pattern displayed in Figures 5.5 and 5.7 where U-Net’s predictions improved from the

preprocessed datasets. To choose a preprocessed dataset for training, care should be placed in the

desired end usage. If the purpose of the model is not miss any positive pixels (e.g. a ship navigating the

Arctic trying to avoid any contact with ice), the Morphological dataset should be chosen due to its high

recall scores. If precise ice floe boundaries are the priority, the Otsu-dataset should be used. Further-

more, if segmentation of meltponds is desired (as there is a correlation between spring meltpond area

and September sea ice extent [64]), the Otsu-trained models show potential in locating and defining their

boundaries.

Overall, this study was designed to prove if LiDAR point cloud information can be transformed into

accurate ground truth labels for the training of a neural network. Utilizing three different preprocessing

methods and three different models, binary segmentation results show that this is a feasible proposition.

6.0.1 Recommendations and Future Work

For future studies in this field, effort should be placed on increasing the accuracy of the automated

labelling system. For example, a de-vignetting algorithm similar to the one applied in [11] could greatly

increase the accuracy of the Otsu-Hybrid dataset. Other image processing methods, such as superpixel

segmentation as demonstrated in [56], could better emulate a manually labelled image of sea ice.

To improve training and inference scores, model architectures can be modified and hyperparameters

tuned. While this study was designed as a proof-of-concept, modifying model architectures for sea ice
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segmentation and classification have shown promise in the literature [7] [12] [58].
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